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INTRODUCTION 
 
The fundamental input to pit optimization and 
mine planning is the resource estimate. Reserve 
reports, pit designs, project debt financing, and 
operating plans are all contingent upon the 
information derived from the pit optimization 
process. Failure to recognize the risk associated 
with the resource estimate can lead to lost 
investment capital or lost opportunity (Figure 1). 
 
In 1999, a mining company faces many obstacles 
to the basic goal of mining and recovering a 
commodity at a profit. A strong US economy 
and low commodity prices has diverted 
investment dollars from the mining industry to 
higher growth and earnings opportunities in the 
stock market. Furthermore, low commodity 
prices have reduced the amount of risk that 
lending banks are willing to accept. In the North 
American gold mining industry, after more than 
a decade of relatively low cost production from 
heap leaching near surface oxide deposits, the 
deposits being taken into production today 
require more capital intensive processing 
facilities, face higher operating costs, and 
consequently lower profit margins. To prosper 
into the next millennium, today's mining 
company must make better decisions regarding 
the reporting of reserves and mine operations 
than in the past. Project risk must be quantified 
both for internal planning and external financing 

purposes, and the reconciliation process becomes 
more important with declining profit margins. 
 
This paper focuses on how the inherent deposit 
variation in grade, modelled using conditional 
simulation, can be used to assess confidence in 
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Figure 1 Reserve grade variation to production 
grade (From Baker and Giacomo, 1998). 
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reserves, time to capital payback and potential 
mine life cash flow variation, pit design options, 
and operating plan accuracy.  
 
METHODOLOGY FOR MODELLING 
RISK 
 
Geostatistical conditional simulations are 
becoming standard industry tools for the 
evaluation of uncertainty and therefore risk. This 
is accomplished by building a model of the 
deposit that reproduces faithfully the full 
histogram and variogram of the conditioning 
data.  Therefore, these models honor the spatial 
variability of the deposit as represented by the 
existing data. Some of the more important 
aspects of building the conditional simulation 
models have been published elsewhere, 
including among others Rossi (1999), Rossi and 
Van Brunt (1997), and Goovaerts (1996).  
 
Multiple simulations (models of the deposit) are 
possible because of the random nature of the 
stochastic (Monte-Carlo) process involved in 
developing each simulation.  In the case study 
developed below, 11 simulations were obtained.  
These 11 simulations represent the possible 
range of grade values for each block. The set of 
possible grades for each block is in fact a 
probability function curve, and is all that is 
needed (under the model) to evaluate risk.  Not 
only E-type estimates can be obtained (as an 
average of the simulations, in theory equating to 
kriging), but also probabilities of exceeding or 
not exceeding thresholds.  Typically it is more 
useful to use probability intervals as measures of 
risk. In layman terms, these probabilities are 
sometimes expressed as “confidence intervals”; 
in strict sense, they describe the range of values 
(minimum and maximum) that under the model 
chosen represent the upper and lower boundaries 
of probability intervals.  For example, one would 
say, for an individual block, that there is a 80% 
probability that the block true, unknown values 
is between 0.6 and 1.1g/t.  This particular block 
would be more “certain” compared to another 
where the same probability interval may have a 
0.2 and 2.0g/t lower and upper bounds.  This 
analysis can be generalized to specific areas 
within the deposit, or the deposit as a whole.  If 
each simulation is passed through a pit optimizer 
such as Whittle Four-X, then a set of 11 
alternative pits will be obtained.  This is the 
Transfer Function described in Rossi and Van 
Brunt (1997), and it allows us to measure risk at 
the mine planning and mine evaluation stage 

properly accounting for geologic and grade 
uncertainty.  
  
THE SIMULATION MODELS  
 
The data set used consisted of gold and copper 
grades, plus a lithology code.  The lithologies 
involved that contained some mineralization 
were an intrusive unit (INT, low grade), and a 
high-grade core, simply referred to here as HI.  
 
A total of approximately 11,000 assays yielded 
about 2,750 20ft composites.  Both gold and 
copper show strong bimodality, according to the 
lithologic boundaries.  The distributions of both 
gold and copper are skewed, with the 20ft copper 
composites showing the highest coefficient of 
variation, at 1.9. 
 
The data set was first declustered using the cell 
declustering method (Deutsch and Journel, 
1992), and then transformed to a standard 
Gaussian distribution. This was done because the 
simulation method requires that the transformed 
Gaussian distribution of the composites be used. 
 
Semi variograms of the transformed and 
untransformed composites were obtained for 
both gold and copper.  These variograms were 
modelled, and then used as input parameters into 
the simulation algorithm.  This was done 
independently for each rock type modelled (INT 
and HI), so there were four variogram models in 

Figure 2 Transfer function and risk modelling 
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total.  For the transformed variable, ranges vary 
from 200 to almost 500 feet between copper and 
gold; the INT unit shows a slightly longer range 
than the HI unit. In all cases, relative nugget 
effects are quite reasonable, in the order of 15 to 
25% of the total variance. 
 
The conditional simulations were prepared 
simulating separately the INT and HI units.  The 
simulation algorithm used was the Sequential 
Gaussian (Isaaks, 1990).  The simulations were 
run on a regular grid and then cut by a solid 

model representing the limits of the unit, first for 
the INT unit (more massive) and then for the HI 
(core) unit.  The total number of nodes simulated 
per rock type exceeded 3 million, although this 
number was significantly reduced after 
discarding simulated points outside the three-
dimensional solids representing the lithologic 
units. A twelfth model was constructed by 
averaging the gold and copper grades from each 
of the 11 conditionally simulated models, this 
model is referred to as the E-type model. 
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Figure 3 Generalized geologic cross section 

Figure 4 E-type optimization pit shells – NPV analysis 
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E-TYPE OPTIMIZATION 
 
The E-type estimate was used to develop nested 
pit shells using FXOP. These shells were in turn 
analyzed to develop a sequence of pushbacks 
with FXAN (Figures 4 and 5). The pushbacks 
were chosen in a fashion to produce 
approximately equal tonnage phases. Although 
tonnage remains approximately constant for each 

of the four pushbacks, the strip ratio increases 
and more scheduling would be required to 
achieve a true optimal design. The economic and 
operating parameters used in the analysis are 
presented in Table 1. These pushbacks have been 
modified with FXMI to honor a 150' minimum 
mining width. The tons and grade of ore and 
waste contained in the mining width adjusted 
shell are listed in Table 2.

 
 

 

 

Table 1 Optimization and analysis parameters 
Parameter Value 
Initial Capital 1000M 
Time Costs 8.4M 
Mining Cost 1.00 
Time Cost in Processing Cost 2.10 
Copper Price ($/10 kg) 12.00 
Gold Price ($/troy ounce) 250.00 
DCR 12% 
Annual Mining Limit (tons) 24.5M 
Annual Processing Limit (tons) 7.0M 

Table 2 E-type optimum pit summary 

Rock Element Tons Metal Grade 
  (000's) (000's)  
Waste  237,324   

HI  23,781   
 CU  3,158 0.133 
 AU  13,986 0.588 

INT  35,581   
 CU  1,662 0.047 
 AU  3,012 0.085 

 
 
 

 
 
 
 
 
 

Figure 5 Perspective view of pushbacks 
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RESERVE REPORTING 
 
Amos (1998) identifies the quantity of reserves 
and resources as a major factor governing the 
level of debt funding available for a project. 
Amos points out that the applicant will be 
disadvantaged if unable to identify and 
categorize the risk associated with the reported 
tonnage and grade. One objective in using 
conditionally simulated models as input into 
Four-X, is to gain a better understanding of the 
risk or potential upside in a reported resource or 
reserve. Most if not all reserve reporting 
guidelines have levels of resources or reserves 
based on the increasing level of geological data, 
knowledge of the ore body, and confidence in the 
estimate. However none of the American, 
Australian, or Canadian reporting schemes which 
are recognized by the government securities 
commissions provide insight to a quantitative 
measure of confidence to make the distinction 
between levels of resources or reserves. Table 3 
presents information about the contained 
resource in the mining width adjusted pit shell 
developed from the E-type estimate. 
Classification into specific levels of a resource 
should be made at the block level, prior to 
optimization. Most mining companies classify 
their Reserves and Resources based on drill hole 
separation and the number of drill holes within 
the search neighborhood, which is used in the 
interpolation of the block grade. Although 
increased drill hole density generally 
corresponds to increased confidence it can be 
easily demonstrated that the grade of the drill 
hole composites in the search neighborhood also 
contributes to the level of confidence in the 
block grade estimate. To truly define the 

confidence in a block grade and the level of 
resource classification this possible variation in 
grade must me accounted for. Table 3 presents 
the difference relative to the E-type estimate in 
the contained tons and grade of ore within the 
mining width adjusted pit shell using simulated 
copper and gold values. The cut-off grade used 
in each tabulation is that based on a Revenue 
Factor equal to one. The values in the table may 
be considered F1 factors (Rossi, 1999), 
representing the anticipated ratio of planned to 
mined values. In an open pit mine the minimum  
increment size for expanding a reserve is a 
minable phase. It is therefore appropriate to look 
at the resource variation on a phase by phase 
basis (Figures 6 – 9). At this scale the 
incremental cash flow becomes the deciding 
factor as to whether the phase is included in the 
reserve or not.  
 
For the purpose of classifying the resource into 
Measured-Indicated-Inferred categories grade 
variation on the block level should be evaluated. 
For the purpose of evaluating the risk involved in 
mining a given phase or pushback it is 
instructive to examine the Max%Diff and Excel's 
PERCENTRANK values in Table 4. The 
Max%Diff value measures the spread, or in some 
sense, the variance of the simulated values 
relative to the E-type value. The 
PERCENTRANK value identifies the position of 
the E-type value within the distribution of 
conditionally simulated values, and therefore 
measures the likelihood of realizing this value 
during mining. 

 
 
 

Table 3 F1 total resource factors 

Simulations Ore Tons % Cu Grade % Cu Metal % Au Grade % Au Metal % Strip Ratio 
Max 104.57 120.55 120.84 124.07 129.74 103.59 
Min 97.23 75.66 78.95 89.05 89.02 99.64 

Average 100.54 101.50 101.99 100.05 100.66 95.47 
E-type 100.00 100.00 100.00 100.00 100.00 100.00 

Range % +4.57 +20.55 +20.84 +24.07 +29.74 +3.59 
 -2.77 -24.34 -21.05 -10.95 -10.98 -0.36 
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The following conclusions are drawn from 
examining the resource with simulated models: 
• The average of the results based on 

conditionally simulated grades is 
approximately equal to the E-type results, 
thereby validating the procedures followed. 
In a study where the E-type or kriged model 
is developed independently from the 
simulations this approach can be used to 
prove that the simulated results are 
unbiased. 

• The differing variability of elements within 
the two rock types is easily understood. 

• It follows then, that drill spacing adequate to 
define one element to a certain confidence 
and corresponding classification, may not be 
adequate for a second element. 

• The distribution of possible results is not 
always distributed evenly about the E-type 
estimate (Figures 6 – 9). 

• The PERCENTRANK function gives an 
indication as to the likelihood of the E-type 
estimate being realized (Table 4). 

• With the exception of Phase 4, there is a 
greater likelihood of realizing or exceeding 
the results predicted by the E-type estimate 
for gold than for copper. 

• Again with the exception of Phase 4, 
confidence is higher for the INT rock type 
than for the HI rock type for copper and for 
gold.  

• The E-type results for gold in rock type HI 
are generally more risk free than for copper. 
The combination of the PERCENTRANK 
value for copper and the wide range of 
possible values leads to a lower level of 
confidence, and should lead to a review of 
the estimation parameters for copper. If the 
estimation parameters are valid, then 
additional drilling information should be 
collected to help reduce the risk. 

 
This section of the paper was completed by first 
exporting Model Files for each pair of simulated 
variables from the general mine planning 
package. Using FXRE these Model Files were 
combined with a Pit List File generated from the 
mining width adjusted E-type Results File, into a 
new Results File. FXUT was then used to 

generate grade - tonnage information by phase, 
which was passed on to EXCEL for graphing.  
 
FINANCING, COMPLETION TESTS AND 
OPERATING PLANS 
 
No large scale mining project financing has been 
funded to date without a completion guarantee 
from the project sponsor. A typical completion 
test might include a production test that ensures: 
 

1) Before completion, a minimum tonnage 
to be processed is delivered to a 
stockpile or leach pad. 

2) A minimum average daily mined 
tonnage is achieved. 

3) A minimum average daily ore tonnage 
is processed. 

4) Ore grades brought to processing are 
within mine plan designated variation. 

5) Minimum quantity and quality of 
product during completion. 

 
The variability of the mineralization greatly 
affects each of these aspects of the completion 
test. Since the foundation of the supporting 
feasibility study is the reserve and the proposed 
mine plan, how accurately the mine plan predicts 
the actual production profile is the most critical 
factor in satisfying the completion test.  
 
In Rossi and Van Brunt (1997) several methods 
were proposed to examine how conditionally 
simulated models can be used to evaluate the 
likelihood of realizing the results anticipated 
from the E-type or kriging based operating mine 
plan in the area of head grade and processing 
rates. The simulated models can also be used to 
evaluate cash flow risk. It is important to 
recognize that the project cash flow is a non-
linear function of the varying quantity of 
resource contained in the simulated models. 
  
In this paper the risk to project cash flow, 
payback, and other important project parameters 
are examined by passing conditionally simulated 
models through the E-type mine schedule and 
then reviewing the variability of the specific 
parameter.
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Figure 6 Gold resource variation in HI rock type 

 

Figure 7 Copper resource variation in HI rock type 
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Figure 8 Gold resource variation in INT rock type 

Figure 9 Copper resource variation in INT rock type 
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Table 4 Resource information listed by phase 
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Table 5 E-type model operating plan results 

 Undiscounted 
Cash Flow 

Discounted 
Cash Flow 

Initial Capital -1,000,000 -1,000,000 
Selling Costs -162,909 -93,169 

Rehabilitation Costs -65,985 -39,068 
Timecost -105,402 -53,143 

Total 1,156,103 263,546 
IRR% 18.81  

Mine Life (yrs) 12.55  
s/r 4.00  

 

 

Figure 11 Operating plan variance 
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Figure 10 E-type model annual operating plan 
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Table 5 shows the results generated from 
analyzing the E-type model based mine plan. 
Figure 10 presents the production profile for the 
same design. Key points in this schedule are the 
initial payback period (years 1 - 4) and the 
beginning of the later phases (periods 5, 8, and 
11). Figure 11 shows that the production profile 
in years 1 through 4 is very stable. The payback 
schedule from the E-type estimate is low-risk.  
Later in the schedule, specifically years 8 and 11 
the schedule suffers from a lack of ore tons. This 
production short fall results in a very high 
variance when the simulated models introduce 
higher amounts of tons. The actual variance 
being measured here consists therefore of a 
component attributable to the variability in the 
mineralization, as well as a component 
attributable to the quality of the schedule at this 
stage. 
 
Another important aspect in securing financing is 
the ability of the mining company to demonstrate 
a certain amount of debt service coverage 

overall, and in downside scenarios. The cash 
flow coverages in downside scenarios drive 
acceptable capital structures and debt capacities 
in the financing. Downside multiples may vary 
between 1.1 - 2.0 of the debt. Base multiples 
may vary 1.3 to 4.0, dependent upon bank 
policy, prevailing economic conditions, and 
other risk. 
 
Figure 12 shows the cumulative undiscounted 
cash flow over the mine life for the E-type model 
based schedule and for all of the individual 
simulations. The graph gives a good indication 
of the potential range in project cash flow by the 
magnitude of the vertical spread of the individual 
lines at the end of the E-type planned mine life in 
year 13. The graph also gives a good indication 
of the likelihood of payback occurring when 
anticipated from the E-type schedule by the 
magnitude of the horizontal spread of the cash 
flows when crossing the zero cumulative cash 
flow gridline. 
 

 

 

Figure 12 Cash flow versus time 
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PIT DESIGN 
 
Producing a detailed design from an optimal 
outline involves smoothing, while deviating as 
little as possible from the optimal outline. As 
was indicated by the pit-by-pit graph in Figure 4, 
minor deviations from the optimal outline will 
have little impact on the total cash flow as long 
as any additional waste mined is offset by the ore 
which it covers. 
 
It is common practice to assess the economic 
stability of pit walls by varying the commodity 
price, where significant movements in the 
position of the wall indicate that the material in 
question is marginal. Equally important, but 
perhaps more difficult to ascertain, is to identify 
the portions of the pit which are "carried" by 
relatively erratic mineralization or mineralization 
that is not as well defined as most of the pit. 
There is no procedure for an E-type or kriged 

estimate that can address this problem. 
 
The eleven pairs of simulated copper and gold 
values were passed on to FXOP for optimization. 
The Specified Case pushback selection from the 
E-type estimate was then imposed upon the 
simulated Results File, and FXMI was run to 
adjust the shells for minimum mining width. The 
mining width adjusted Results Files can then be 
loaded into the general mine planning package, 
and the conditional probability of each block 
being mined according to the E-Type mine plan 
may be calculated. Conditional probability of 
mining maps may be developed by bench or 
section and used as guides during pit design. 
Figures 13 through 15 show bench plans of the 
probability of each block being mined according 
to the E-type model based mine plan. The maps 
suggest that the following points should be 
incorporated into the design: 
• Reduce the size of the initial phases by 

Figure 13   5810 bench mining probability map 
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pulling in the NE walls of the phases. 
• Reduce the size of the ultimate pit by 

moving in part of the west wall in the third 
and fourth phases. 

 
Developing these conditional probability maps 
gives the mine planning engineer two distinct 
advantages over conventional planning. 

 
1. Identification of zones sensitive to the 

natural variability of the mineralization aids 
in the positioning of intermediate phase and 
final walls.  

2. This procedure followed here can also be 
used to target additional drilling when 
evaluating a deposit.

 
 
 
 
 
 
 
 
 
 

Figure 14  5410 bench mining probability map 
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Conclusions 
 
It has been demonstrated that passing 
conditionally simulated grade models through 
the Four-X pit optimization software package 
gives the mine planning engineer an insight as to 
the likelihood of achieving the cash flow and 
production profile associated with a mine design 
based on an E-type or kriged estimate. It is 
recommended that the mining industry adopt 
such conditional simulation-pit optimization 
studies as a standard tool to analyze the inherent 
variability associated with grade on these aspects 
of design. If not, grade variability effects on 
mine design and cash flow like the reconciliation 
results represented in Figure 1 will continue. 
 

Figure 15  5010 bench mining probability map 
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